32 research outputs found

    Measurement of phosphorus segregation in silicon at the atomic-scale using STM

    Full text link
    In order to fabricate precise atomic-scale devices in silicon using a combination of scanning tunnelling microscopy (STM) and molecular beam epitaxy it is necessary to minimize the segregation/diffusion of dopant atoms during silicon encapsulation. We characterize the surface segregation/diffusion of phosphorus atoms from a δ\delta-doped layer in silicon after encapsulation at 250∘^{\circ}C and room temperature using secondary ion mass spectrometry (SIMS), Auger electron spectroscopy (AES), and STM. We show that the surface phosphorus density can be reduced to a few percent of the initial δ\delta-doped density if the phosphorus atoms are encapsulated with 5 or 10 monolayers of epitaxial silicon at room temperature. We highlight the limitations of SIMS and AES to determine phosphorus segregation at the atomic-scale and the advantage of using STM directly

    Topological phases of a dimerized Fermi-Hubbard model for semiconductor nano-lattices

    Get PDF
    Motivated by recent advances in fabricating artificial lattices in semiconductors and their promise for quantum simulation of topological materials, we study the one-dimensional dimerized Fermi-Hubbard model. We show how the topological phases at half-filling can be characterized by a reduced Zak phase defined based on the reduced density matrix of each spin subsystem. Signatures of bulk-boundary correspondence are observed in the triplon excitation of the bulk and the edge states of uncoupled spins at the boundaries. At quarter-filling we show that owing to the presence of the Hubbard interaction the system can undergo a transition to the topological ground state of the non-interacting Su-Schrieffer-Heeger model with the application of a moderate-strength external magnetic field. We propose a robust experimental realization with a chain of dopant atoms in silicon or gate-defined quantum dots in GaAs where the transition can be probed by measuring the tunneling current through the many-body state of the chain.Comment: 11 pages, 7 figure

    Exact location of dopants below the Si(001):H surface from scanning tunnelling microscopy and density functional theory

    Get PDF
    Control of dopants in silicon remains the most important approach to tailoring the properties of electronic materials for integrated circuits, with Group V impurities the most important n-type dopants. At the same time, silicon is finding new applications in coherent quantum devices, thanks to the magnetically quiet environment it provides for the impurity orbitals. The ionization energies and the shape of the dopant orbitals depend on the surfaces and interfaces with which they interact. The location of the dopant and local environment effects will therefore determine the functionality of both future quantum information processors and next-generation semiconductor devices. Here we match observed dopant wavefunctions from low-temperature scanning tunnelling microscopy (STM) to images simulated from first-principles density functional theory (DFT) calculations. By this combination of experiment and theory we precisely determine the substitutional sites of neutral As dopants between 5 and 15A below the Si(001):H surface. In the process we gain a full understanding of the interaction of the donor-electron state with the surface, and hence of the transition between the bulk dopant (with its delocalised hydrogenic orbital) and the previously studied dopants in the surface layer.Comment: 12 pages; accepted for publication in Phys. Rev.

    Spatially resolved dielectric loss at the Si/SiO2_2 interface

    Full text link
    The Si/SiO2_2 interface is populated by isolated trap states which modify its electronic properties. These traps are of critical interest for the development of semiconductor-based quantum sensors and computers, as well as nanoelectronic devices. Here, we study the electric susceptibility of the Si/SiO2_2 interface with nm spatial resolution using frequency-modulated atomic force microscopy to measure a patterned dopant delta-layer buried 2 nm beneath the silicon native oxide interface. We show that surface charge organization timescales, which range from 1-150 ns, increase significantly around interfacial states. We conclude that dielectric loss under time-varying gate biases at MHz and sub-MHz frequencies in metal-insulator-semiconductor capacitor device architectures is highly spatially heterogeneous over nm length scales

    Room Temperature Incorporation of Arsenic Atoms into the Germanium (001) Surface**

    Get PDF
    Germanium has emerged as an exceptionally promising material for spintronics and quantum information applications, with significant fundamental advantages over silicon. However, efforts to create atomic-scale devices using donor atoms as qubits have largely focused on phosphorus in silicon. Positioning phosphorus in silicon with atomic-scale precision requires a thermal incorporation anneal, but the low success rate for this step has been shown to be a fundamental limitation prohibiting the scale-up to large-scale devices. Here, we present a comprehensive study of arsine (AsH3) on the germanium (001) surface. We show that, unlike any previously studied dopant precursor on silicon or germanium, arsenic atoms fully incorporate into substitutional surface lattice sites at room temperature. Our results pave the way for the next generation of atomic-scale donor devices combining the superior electronic properties of germanium with the enhanced properties of arsine/germanium chemistry that promises scale-up to large numbers of deterministically placed qubits

    Room Temperature Incorporation of Arsenic Atoms into the Germanium (001) Surface

    Get PDF
    Germanium has emerged as an exceptionally promising material for spintronics and quantum information applications, with significant fundamental advantages over silicon. However, efforts to create atomic-scale devices using donor atoms as qubits have largely focused on phosphorus in silicon. Positioning phosphorus in silicon with atomic-scale precision requires a thermal incorporation anneal, but the low success rate for this step has been shown to be a fundamental limitation prohibiting the scale-up to large-scale devices. Here, we present a comprehensive study of arsine (AsH3) on the germanium (001) surface. We show that, unlike any previously studied dopant precursor on silicon or germanium, arsenic atoms fully incorporate into substitutional surface lattice sites at room temperature. Our results pave the way for the next generation of atomic-scale donor devices combining the superior electronic properties of germanium with the enhanced properties of arsine/germanium chemistry that promises scale-up to large numbers of deterministically placed qubits

    Single-Atom Control of Arsenic Incorporation in Silicon for High-Yield Artificial Lattice Fabrication

    Full text link
    Artificial lattices constructed from individual dopant atoms within a semiconductor crystal hold promise to provide novel materials with tailored electronic, magnetic, and optical properties. These custom engineered lattices are anticipated to enable new, fundamental discoveries in condensed matter physics and lead to the creation of new semiconductor technologies including analog quantum simulators and universal solid-state quantum computers. In this work, we report precise and repeatable, substitutional incorporation of single arsenic atoms into a silicon lattice. We employ a combination of scanning tunnelling microscopy hydrogen resist lithography and a detailed statistical exploration of the chemistry of arsine on the hydrogen terminated silicon (001) surface, to show that single arsenic dopants can be deterministically placed within four silicon lattice sites and incorporated with 97±\pm2% yield. These findings bring us closer to the ultimate frontier in semiconductor technology: the deterministic assembly of atomically precise dopant and qubit arrays at arbitrarily large scales

    Microwave Properties of 2D CMOS Compatible Co-Planar Waveguides Made from Phosphorus Dopant Monolayers in Silicon

    Get PDF
    Low-dimensional microwave interconnects have important applications for nanoscale electronics, from complementary metal–oxide-semiconductor (CMOS) to silicon quantum technologies. Graphene is naturally nanoscale and has already demonstrated attractive electronic properties, however its application to electronics is limited by available fabrication techniques and CMOS incompatibility. Here, the characteristics of transmission lines made from silicon doped with phosphorus are investigated using phosphine monolayer doping. S-parameter measurements are performed between 4–26 GHz from room temperature down to 4.5 K. At 20 GHz, the measured monolayer transmission line characteristics consist of an attenuation constant of 40 dB mm−1 and a characteristic impedance of 600 Ω. The results indicate that Si:P monolayers are a viable candidate for microwave transmission and that they have a.c. properties similar to graphene, with the additional benefit of extremely precise, reliable, stable, and inherently CMOS compatible fabrication

    Nondestructive imaging of atomically thin nanostructures buried in silicon

    Get PDF
    It is now possible to create atomically thin regions of dopant atoms in silicon patterned with lateral dimensions ranging from the atomic scale (angstroms) to micrometers. These structures are building blocks of quantum devices for physics research and they are likely also to serve as key components of devices for next-generation classical and quantum information processing. Until now, the characteristics of buried dopant nanostructures could only be inferred from destructive techniques and/or the performance of the final electronic device; this severely limits engineering and manufacture of real-world devices based on atomic-scale lithography. Here, we use scanning microwave microscopy (SMM) to image and electronically characterize three-dimensional phosphorus nanostructures fabricated via scanning tunneling microscope–based lithography. The SMM measurements, which are completely nondestructive and sensitive to as few as 1900 to 4200 densely packed P atoms 4 to 15 nm below a silicon surface, yield electrical and geometric properties in agreement with those obtained from electrical transport and secondary ion mass spectroscopy for unpatterned phosphorus δ layers containing ~1013 P atoms. The imaging resolution was 37 ± 1 nm in lateral and 4 ± 1 nm in vertical directions, both values depending on SMM tip size and depth of dopant layers. In addition, finite element modeling indicates that resolution can be substantially improved using further optimized tips and microwave gradient detection. Our results on three-dimensional dopant structures reveal reduced carrier mobility for shallow dopant layers and suggest that SMM could aid the development of fabrication processes for surface code quantum computers.ISSN:2375-254
    corecore